A formula for the First Eigenvalue of the Dirac Operator on Compact Spin Symmetric Spaces
نویسندگان
چکیده
Let G/K be a simply connected spin compact inner irreducible symmetric space, endowed with the metric induced by the Killing form of G sign-changed. We give a formula for the square of the first eigenvalue of the Dirac operator in terms of a root system of G. As an example of application, we give the list of the first eigenvalues for the spin compact irreducible symmetric spaces endowed with a quaternion-Kähler structure.
منابع مشابه
The First Eigenvalue of the Dirac Operator on Compact Spin Symmetric Spaces
We give a formula for the first eigenvalue of the Dirac operator acting on spinor fields of a spin compact irreducible symmetric space G/K.
متن کاملOn a characteristic of the first eigenvalue of the Dirac operator on compact spin symmetric spaces with a Kähler or Quaternion-Kähler structure
It is shown that on a compact spin symmetric space with a Kähler or Quaternion-Kähler structure, the first eigenvalue of the Dirac operator is linked to a “lowest” action of the holonomy, given by the fiberwise action on spinors of the canonical forms characterized by this holonomy. The result is also verified for the symmetric space F4/Spin9, proving that it is valid for all the “possible” hol...
متن کاملVafa-witten Estimates for Compact Symmetric Spaces
We give an optimal upper bound for the first eigenvalue of the untwisted Dirac operator on a compact symmetric space G/H with rkG− rkH ≤ 1 with respect to arbitrary Riemannian metrics. We also prove a rigidity statement. Herzlich gave an optimal upper bound for the lowest eigenvalue of the Dirac operator on spheres with arbitrary Riemannian metrics in [9] using a method developed by Vafa and Wi...
متن کاملConnections on Naturally Reductive Spaces, Their Dirac Operator and Homogeneous Models in String Theory
Given a reductive homogeneous space M = G/H endowed with a naturally reductive metric, we study the one-parameter family of connections ∇t joining the canonical and the LeviCivita connection (t = 0, 1/2). We show that the Dirac operator Dt corresponding to t = 1/3 is the so-called “cubic” Dirac operator recently introduced by B. Kostant, and derive the formula for its square for any t, thus gen...
متن کاملThe First Dirac Eigenvalue on Manifolds with Positive Scalar Curvature
We show that on every compact spin manifold admitting a Riemannian metric of positive scalar curvature Friedrich’s eigenvalue estimate for the Dirac operator can be made sharp up to an arbitrarily small given error by choosing the metric suitably.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005